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We study a stabilizable mechanical system in the vicinity of an equilibrium position. This
position, as a rule, is unstable, and the system is underactuated. It is assumed that faults
affect the technical process and its control. We suggest a fault diagnosis technique based on
estimation of Lyapunov characteristic exponents of measured variables. A model of a linear
switching system is involved for the system with faults description, and a common quadratic
Lyapunov function is used to evaluate the deviation of the maximum exponent with respect
to the default system. A scheme of fault magnitude estimation is suggested related to the
degree of this deviation. An example of a 2-degree of freedom system is presented to illustrate
the procedure.
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1. Introduction

Fault detection systems (FDS) are successfully used in many types of technical processes to
improve reliability and safety (Frank, 1990; Isermann, 1997, 2005, 2011; Gertler, 1998; Chen
and Patton, 1999; Ding, 2008). Recently, improved methods for detecting malfunctions have
been applied to numerous technical and engineering objects, such as machine tools, industrial
robots, automobile power trains and many others. The using of FDS entails the benefits of good
operational safety due to its key features of an early warning system and cost effectiveness, since
condition-based maintenance is performed despite corrective or preventive maintenances. The
main tasks of FDS are: fault detection (FD) to recognize that a fault happened, fault isolation
or diagnosis (FDI) to find the location and cause of the fault, and fault estimation. Advanced
FD methods are based on a mathematical process and signal models.
Model-based FD methods use residuals which indicate changes between the process and

the model. One general assumption is that the residuals have changed significantly, so that
detection is possible with regards to the mostly inherent stochastic element. This means that
the deviation of the residual after the appearance of a fault is large enough and lasts long enough
to be detected. It is usually assumed that some general features are presented here:
• parity equations – model structure and parameters are known and fit the process well;
• state estimation (state observers) – methods based on state observers are still a topic of
active research. In this approach, the residual is the observation error calculated from the
process measurements and the output of the reference model;

• parameter estimation (small changes are detectable for slowly and fast progressing faults)
– parameter estimation methods are well established and widely used in control systems,
e.g., in adaptive controllers. They have also been successfully applied to a variety of fault
detection problems where sufficiently accurate linear process models could be derived.
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In the signal processing based FDI, some mathematical or statistical operations are per-
formed on the measurements to extract the information about the fault (Saberi et al., 2007;
Zhang, 2010). Also FD methods based on time- and frequency-domain signal analysis without
an explicit mathematical model are state of the art in process supervision. In this approach, fault
indicators are derived from process measurements via limit and trend checking of the process
signals and by means of various spectral analysis methods (wavelet analysis, sidebands etc.).
As well, other approaches and techniques have been employed for the last decades. Among

them the geometrical approach, expert system approach, fuzzy techniques and neural networks
are presented (Talebi et al., 2010; Meskin and Khorasani, 2011).
The main objective of this work is to detect when a measurement failure has occurred,

proposing a time interval of the occurrence. To do that, we consider a known failure bound but
failures are not constant all along the experimental time. To deal with this problem, we suppose
that failures can be collected and considered as an added disturbance, which takes values on
a set of unknown (but bounded) parameters. Then, once the system is stabilized (the control
law can be freely determined by the user), we use our main result to define the time interval
of failure occurrence. In this scheme, we use switching theory due to possible values of failures,
and Lyapunov exponents theory to determine stability. We consider that failure measurement
implies instability. So, fault detection is based on the loss of stability of the controlled system.
Moreover, the control design must be able to maintain stability despite sensors faults, consi-

dered bounded. The procedure is based on linearized equations around a non-stable equilibrium
point, with measurement faults. The sensor faults induce errors on the measurements, so de-
rivation of the state variable x(t) is ∆x(t). To detect it, we split the time interval and fix the
allowed maximum fault. Then, we estimate when this bound is exceeded. The multiplicative
model is used: ∆x(t) = E(δ)x(t), where E(δ) is the faulty matrix. We want to estimate the
time interval when a fault occurs. Then, in each time interval [tj , tj+1], the expression for E(δ)
becomes E(δj) := Ej (see Fig. 1).

Fig. 1. Schematic diagram of the faulty switched system

Consider mechanical systems described by deterministic analytical models whose dynamics
are determined by Lagrange equations. We assume that a control function is presented, and
the number of degrees of freedom exceeds the dimension of the vector of control generalized
forces (underactuated systems). The research of such systems is of great importance for various
applications, since in practice it is often necessary to reduce the number of motor elements
that carry out control. For example, in astronautics the equipment of each link of the robot
manipulator with an electric motor entails an increase in the weight and cost of the spacecraft
as well as a decrease in the payload weight. Moreover, if control algorithms of such a robot are
based on the mandatory use of all engines, the failure of one of them means the failure of the
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entire robot. This can be avoided by developing manipulator control laws that are effective for
one or more idle engines, that is, solving corresponding control tasks with a shortage of control
actions.
In addition to FD method, the paper involves two topics:

a) Switched systems (Hassibi and Boyd, 1998; Shorten and Narendra, 1998; Liberzon and
Morse, 1999; Zhai et al., 2000; Liberzon, 2003; Xie and Wang, 2003; Geromel and Cola-
neri, 2006). Switched systems are of variable structure or multi-modal class. According
to (Liberzon and Morse, 1999), a switched system can be viewed as an hybrid dynamical
system that is composed of a family of continuous-time subsystems along with a switching
law among them.

b) Characteristic Lyapunov exponents (CLE). An important characteristic in the analysis of
dynamic systems is finding of the highest Lyapunov exponent, as well as the full spectrum.
The Lyapunov exponents are a quantitative measure of the sensitivity of phase trajecto-
ries to initial conditions. There are several methods for calculating Lyapunov exponents
(Shimada and Nagashima, 1979; Molchanov and Pyatnitskii, 1989; Muller, 1995). When
the equations of motion of the dynamical system are known, there exist well designed
techniques for computing them. Also, there are numerous results on calculation of CLE
from experimental data (Wolf et al., 1985; Eckmann and Ruelle, 1992).

The aim of the paper is the design of an algorithm which allows one to detect faults in
systems under study based on estimation of the maximal CLE value for the output signal of the
state vector.

2. Preliminaries

2.1. System equations

In this paper, we deal with autonomous (time-invariant) mechanical systems defined by
equations of motion in the Lagrange form. Consider the general coordinates q = [q1, . . . , qn1 ]

T,
and the control input u(t) = [u1(t), . . . , um1(t), . . . , un1(t)]

T with us ≡ 0 for 1 ¬ s ¬ m1 < n1.
Then, the nonlinear system is obtained from

d

dt

∂K
∂q̇s
− ∂K
∂qs
=
∂Π

∂qs
+Qs + us(t) s = 1, n1 (2.1)

where K, Π are the kinetic and potential energies of the system, Qs represent the generalized
non-potential forces, and us(t) are controls. We assume that all coordinates qs are positional
(noncyclic)1 and system (2.1) with u(t) ≡ 0 has an unstable equilibrium

q = q0 q̇ = 0 (2.2)

which is stabilizable with an appropriate control function.
Let us consider a state space model of the uncontrolled nonlinear dynamical system

ẋ = F(t,x) F(t,0) = 0 (2.3)

where the function F is bounded on time and continuously differentiable. Also a closed-loop
controlled system

ẋ = F(t,x) +B(t,x)u(t) B(t,0) = 0

y = C(t,x) +D(t,x)u(t) C(t,0) = 0 D(t,0) = 0
(2.4)

1While cyclic coordinates are in, we use the Routh function instead of Lagrangian.
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is associated with (2.3), and input-output behaviour is considered for (2.4). Here u is the vector of
control inputs, and the output y represents measurements. If the control function is designed to
stabilize the equilibrium x = 0, then in some neighbourhood of the origin the system behaviour
may be approximated by the linearized equations

ẋ = F0(t)x+B0(t)u(t) y = C0(t)x+D0u(t) (2.5)

where

F0 =
∂F(t,x)

∂x

∣∣∣∣∣
x=0

B0 = B(t,0) C0 =
∂C(t,x)

∂x

∣∣∣∣∣
x=0

D0 = B(t,0)

We recall that the following statements are valid (Muller, 2009):

Theorem 2.1. If the linearized system ẋ = F0x is exponentially stable, and

lim
x→0

‖F(t,x)− F0x‖
‖x‖ = 0 (2.6)

holds, then the equilibrium point of nonlinear system (2.3) is exponentially stable as well.

Theorem 2.2. If the linearized system (2.5)1) is stabilized exponentially by a linear static or
dynamic output feedback (2.5)2), and

lim
x→0

‖C(t,x)−C0x‖
‖x‖ = 0 (2.7)

holds, then the equilibrium point of nonlinear system (2.4) is exponentially stabilized by
the same feedback.

We suppose that equations (2.1) satisfy conditions of Theorems 2.1 and 2.2. Then using
q̃ = q− q0, we obtain

M¨̃q+G0 ˙̃q+H0q̃ = u (2.8)

Here M, G0, H0 are constant matrices, M is symmetric and positive definite. Since M is
nonsingular, taking x(t) = [ ˙̃q(t), q̃(t)]T, system (2.8) may be rewritten in the form

ẋ(t) = A0x(t) +Bu(t) (2.9)

where the matrix A0 is an unstable square matrix of the order n = 2n1. We note that in some
situations the use of equations (2.8) is more convenient. For instance, when system contains
uncertain parameters or is of a high order, operating with matrices of half size is welcomed.

2.2. Switching systems

Besides that, we use the model of autonomous switched systems described by

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t) x(t0) = x0 (2.10)

defined for all t ­ 0 where x(t) ∈ Rn is the state vector, u(t) ∈ Rq is the control, σ(·) : R →
{1, 2, . . . , N} is a piecewise constant function (usually called the switching rule), and where
the matrices Aσ(t), Bσ(t) are constructed by switching between a set of the constant matrices

Aσ(t) ∈ {A1,A2, . . . ,Am}, Bσ(t) ∈ {B1,B2, . . . ,Bm}, Aj ∈ Rn×n, Bj ∈ Rn×q (j = 1, N ), i.e. at
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any time t the matrices Aσ(t), Bσ(t) are equal to one and only one pair of the matrices Aj, Bj
in the above sets.
It is supposed that the solution x(t,x0) is continuous, so if the pair Ai, Bi is associated with

system (2.10) in the time interval [t1, t2), and the pair Aj , Bj in the time interval [t2, t3), there
is no gap on the phase trajectory while switching. Thus, the initial state x(t2) in the interval
[t2, t3) is taken the terminal state (just before switching) of the vector x(t) in the previous time
interval. Also, we involve that once the matrices Aσ(t), Bσ(t) assume the values Aj , Bj for an
interval of time τ where τ ­ τ⋆ > 0, and the constant τ⋆ is arbitrarily small and independent
of j.
It is well known that if all the matrices Aj are stable (have spectrum in the open left half of

the complex plane) and share a common quadratic Lyapunov function (CQLF), then switched
system (2.10) is globally exponentially stable (uniformly with respect to switching signals). In
other words, if there exist two symmetric positive definite matrices P and −Q such that

ATj P+PAj ¬ Q j = 1, N (2.11)

then there exist constants α ­ 1 and λ > 0 that solution of (2.10) satisfies

‖x(t)‖ ¬ αe−λt‖x(0)‖ (2.12)

3. Main results

When the mechanical system is working around the equilibrium state, its behaviour can be
described by a linear time invariant (LTI) model of the form

ẋ(t) = A0x(t) +B0u(t) + F1f(t) (3.1)

Here x(t) is the state vector, u(t) is the vector of manipulated inputs (known), and f(t) is the
vector of faults.

3.1. Controlled system without faults

For “ideal” faultless system f(t) ≡ 0.
Suppose that (A0,B0) is stabilizable, (C0,A0) detectable, and we synthesize the control

u(t) = K0x(t) that stabilizes the faultless system. We assume a state-feedback controller K0
has a complete access to the state vector, and velocities are calculated according to q(t) change.
Thus, the nominal system takes the form

ẋ(t) = Ax(t) A = A0 +B0K0 (3.2)

3.2. Fault detection as switching

We suppose now that the system presents measurement faults.
To detect faults we shall use the classical state observer scheme, i.e. the faults will be modeled

as state variable changes ∆x(t). In this paper, we have limited ourselves to sensor and actuator
faults. To study the behaviour of x(t) in some finite time interval [t1, t1+T ], we split this interval
into small parts [tj , tj+1] (tj+1 − tj = hj ­ h > 0, j = 1, N , tN+1 = t1 + T ), and assume that
E(δ) is a piecewise function, and in each interval the replacement ∆x(t) is allowed. With this,
we come to the switching system

ẋ(t) = (A+E(δj))x(t) E(0) = 0 (3.3)

where Ej = E(δj) is the faulty matrix in the time interval [tj , tj+1].
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3.3. Stability theorem

We present first an instrumental lemma.

Lemma 3.1. Consider a square nonsingular complex matrix W = {wsk} of the order n and
the matrix Ψ = diag (ψ1, . . . , ψn), 0 < ψ1 ¬ ψ2 ¬ · · · ¬ ψn. Then real the matrices
WΨW⋆ − ψ1WW⋆ and ψnWW⋆ −WΨW⋆ are positive semidefinite.

Proof. Let us introduce the auxiliary matrix ∆Ψ = diag (0, ψ2 − ψ1, . . . , ψn − ψ1) =
diag (0, α21, . . . , α

2
n−1). αs ­ 0, s = 1, n − 1, and I is identity matrix. Then the following

implications take place

WΨW⋆ − ψ1WW⋆ =W(Ψ − ψ1In)W⋆ =W∆ΨW⋆

=W∆Ψ1/2∆Ψ1/2W⋆ = (W∆Ψ1/2)(W∆Ψ1/2)⋆

The last matrix product may be interpreted as Gramian matrix for system of vectors

[α1w12 + · · · + αn−1w1n], . . . , [α1wn2 + · · ·+ αn−1wnn]

hence it is non-negative. The part of the statement concerning the matrix ψnWW
⋆ −

WΨW⋆ may be proven in the same manner. �

Now we state the following theorem.

Theorem 3.1. Suppose that the given matrix A in system (3.3) is stable, has no multiple
eigenvalues, and the matrix S brings it to a Jordan normal form J = S−1AS. Let further
its maximum CLE be equal to λmax, and ‖δj‖ ¬ δ0 > 0 for all j ∈ {1, . . . , N}. Then:
(i) If δ0 is small enough with δ0 < |λmax|, system (3.3) is globally exponentially stable
(uniformly on j) with the common quadratic Lyapunov function (CQLF)

V (x) = xT(S−1)TS−1x (3.4)

(ii) Let λj be the maximum eigenvalue of the matrix (S
−1)TS−1Ej +E

T
j (S
−1)TS−1. If

supλj
∣∣
l1¬j¬l2

= λ̃ 1 ¬ l1, l2 ¬ N

then in the time interval (tl1 , tl2) the inequality

‖x(t)‖ ¬ α exp
[(
λmax +

1

2
λ̃
)
t
]
‖x(tl1)‖ (3.5)

holds.

Note. A little bit more realistic is to affirm that its maximum CLE does not exceed λ, i.e. is
equal to λ− ε, where ε > 0 characterizes the calculation error.

Proof. Consider a quadratic Lyapunov function with P = (S−1)TS−1. Notice that

AT(S−1)TS−1 + (S−1)TS−1A = ((ST)−1ST)AT(S−1)TS−1 + (S−1)TS−1A(SS−1)

= (ST)−1(STAT(S−1)T)S−1 + (S−1)T(S−1AS)S−1 = (ST)−1JTS−1 + (S−1)TJS−1

= (S−1)T(J+ JT)S−1

and this matrix does not exceed 2λmax(S−1)TS−1. By (3.3), the time derivative of V is a
quadratic form with matrix

(S−1)T(J+ JT)S−1 +ETj (S
−1)TS−1 + (S−1)TS−1Ej

¬ (λmaxI+ETj )(S−1)TS−1 + (S−1)TS−1(λmaxI+Ej) = Q
(3.6)
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The matrices Ej are continuous functions of δj, and their norms tend to zero uniformly on j
as δ0 → 0. This means that for a small enough value of δ0, matrix Q (3.6) is negative, and
stability conditions (2.11) take place, which proves the first part of the theorem statement.
Now let λminP , λ

max
P be the minimum and maximum eigenvalues of the matrix P. It follows

that inequality

λminP ‖x‖2 ¬ V (x) ¬ λmaxP ‖x‖2 (3.7)

is valid. Moreover, one can see that

Q ¬
(
λmax +

1

2
λ̃
)
(S−1)TS−1 + (S−1)TS−1

(
λmax +

1

2
λ̃
)
= (2λmax + λ̃)P

Thus, dV/dt ¬ (2λmax + λ̃)V (t), and

V (t) ¬ V0 exp[(2λmax + λ̃)t] (3.8)

Taking into account inequality (3.7), we conclude that (3.5) is fulfilled. This completes the
proof of the theorem. �

Corollary 3.1. It should be taken into account that in the second part of the theorem, the
value λmax − λ̃/2 does not have to be negative. As it follows from (3.8), estimation (3.7)
remains valid even if ‖δj‖ is big enough, and the system becomes unstable.

Corollary 3.2. If for some period of time [t̃, t̃ + T̃ ] (t̃ ­ t1, T̃ ¬ T ) the maximum CLE of
the output state vector is λ⋆, then for any small ε > 0 there exist such switches that
λj ­ 2(λ⋆ − λmax − ε).

The last acknowledgement allows one to construct a scheme for estimation the domain of
values δj for a given period of time, based on knowledge of the maximum CLE which is calculated
from the information about the output signal.

Let us also note the fact that for some reasons it may be better to perform the linear
transformation x = Sz first. Then equations (3.3) transform to

ż = (J+ S−1EjS)z (3.9)

Generally, z is a complex vector, but the Lyapunov function V = z⋆z and its derivative

dV

dt
= z⋆(J⋆ + S⋆E⋆j (S

−1)⋆ + J+ S−1EjS)z (3.10)

are real. The form of notation by equations (3.9) may be more preferable when the matrix S
(which is found by programme) is bulky and S−1 is even worse, then dealing with the matrix P
may generate essential computational errors. For sure, one may overcome such a problem, but
this will require additional effort, for instance appropriate scaling for the eigenvectors of A.

Remark 3.1. Equations (3.9) can be easily reduced to the real form if, instead of the pair
complex conjugate eigenvectors, a pair with real and imaginary parts is taken. Then the
vector z becomes real, and the block with pair conjugate eigenvalues in the Jordan normal
form is replaced as follows

[
eigs 0
0 eigs

]
−→
[
Reeigs Imeigs
− Imeigs Reeigs

]
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4. 2-Degree of freedom system: Scheme of the fault estimation

Let the original system (without control) linearized in the neighborhood of an unstable equili-
brium is associated with the matrices of second order M, G0, H0. To stabilize it, we introduce
the control u(t) = [u1(t), 0]

T, u1(t) = k1q1+k2q2+k3q̇1+k4q̇2 and choose the appropriate values
for ks (s = 1, 4). Once we wish to stabilize the system, the desired choice gives rather a big value
to |λmax| with the aim to reduce the stabilization period of time. But for our purpose (fault
estimation) the rather small value for |λmax| is more suitable. This makes easier the estimation
of the maximum LCE of the output solution. Now we have a nominal (asymptotically stable)
system with matrices

G = G0 −
[
k3 k4
0 0

]
H = H0 −

[
k1 k2
0 0

]
(4.1)

According to the previous Section, we consider faults related to the control effort as

f(t) ≈ k1δ1(t)q̃1 + k2δ2(t)q̃2 + k3δ1(t) ˙̃q1 + k4δ2(t) ˙̃q2 (4.2)

where δ1(t), δ2(t) are unknown piecewise functions.
The first step is to find the transformation matrix S and bring the equations to form (3.3)

or, most likely, (3.9). If the system order is not very high, the corresponding analytical (due to
presence uncertain parameters δs) calculations are rather simple.
The second step comes from the study of (3.10). It derives the negativeness of the matrix

D(λ, δ1j , δ2j) = λI4 +
1

2
(S⋆E⋆j(S

−1)⋆ + S−1EjS) (4.3)

where λ is another parameter which represents some upper bound for λmax. For a 2-DOF system,
this condition determines two or three 3D-surfaces that have the second order on δ and up to
the fourth order on λ. For different values of λ, they determine contour lines on δ-plane.
The third step relies upon calculation of the maximum CLE value for a given time interval

and is based on measurement of the output signal – the time series for components of the state
vector. Then, depending of the values found, the estimation of the corresponding δ-domain is
given.

4.1. Algorithm

Step 1. Construct a stabilizable control u(t) for system (2.8).

Step 2. Construct the matrix S from the Jordan normal form J = S−1AS.

Step 3. Fix the allowed maximum fault.

Step 4. Study the negativeness of the matrix D (4.3) with regard to λ.
Step 4a. Find the time interval where the bound is exceeded.

4.2. Illustrative example

Below, we illustrate this procedure on the following example. Consider system (2.8) with

M =

[
2 1
1 1

]
G0 = 0, H0 = HΠ +HC =

[
8 2
2 1

]
+

[
0 9/5
−9/5 0

]

The matrix of potential forcesHΠ is positive definite, but the circulatory force makes the system
unstable – eigenvalues are complex and two of them belong to the right half plane.
To stabilize the equilibrium, we introduce the control u1(t) and choose the appropriate values

for ks:
(
−1199100 ,−234 ,−68120 ,−61320

)
.
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Thus we have (4.1)

G =

[
681
20

613
20

0 0

]
H =

[
1999
100

191
20

1
5 1

]
A0 =




0 0 1 0

0 0 0 1

−1979100 −17120 −68120 −61320
1959
100

151
20

681
20

613
20




The eigenvalues of the stabilized system are: µ1,2 = −15 ± 3i, µ3 = −1, µ4 = −2. Then the
transformation matrix is as follows

S =




25
21

5
3 1 0

−1 −1 44481
40501

600
40501

−5021 −53 −15 3

2 1 35481
202505

133563
40501




and the expressions for blocks of the matrix E comes from (4.2)

E11 = E12 = 0 E21 =

[
−1199100 δ1 −234 δ2
1199
100 δ1

23
4 δ2

]
E22 =

[
−68120 δ1 −61320 δ2
681
20 δ1

613
20 δ2

]

Fig. 2. Surface ∆4 = 0 and its cross-sections

Further we need to analyse the conditions of negativeness of the matrix D. For this purpose,
since the matrix is of the fourth order, there is no real need to use the Schur complement. So,
we use Sylvester’s criterion which gives ∆2 > 0, ∆3 < 0, ∆4 = detQ > 0 (expressions for them
are given in Appendix). The natural look of ∆4 = 0 is presented in Fig. 2a, and the contour
lines with λ = −0.1, λ = 0 in Fig. 2b. The shape of the surface is strongly flattened, and for
better performance we shall give the scene the transformation

δ1 =
1√
2
(δ̃1 + 0.02δ̃2) δ2 =

1√
2
(δ̃1 − 0.02δ̃2)

The resulting surface is presented in Fig. 3a. As one can see in Fig. 3b, the condition detD ­ 0
implies the fulfilment of ∆3 ¬ 0 – another surface “envelops” the first one. The condition ∆2 ­ 0
is also satisfied, and the corresponding surface is much larger than the presented ones. Cross-
-sections of all three surfaces with the plane λ = −0.1 are shown in Fig. 4a. So, ∆4 > 0 is
necessary and the sufficient condition for negativeness of D. The contour lines (ellipses) for
different values of λ ­ −0.2 are drawn in Fig. 4b (λ = −0.15 – dash line; λ = −0.10 – solid line;
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Fig. 3. Domain where the matrix D is positive definite

Fig. 4. Contour lines for different values of λ

Fig. 5. (a) Maximum faults allowed; (b) functions δs

λ = 0.05 – dash dot line). Undoubtedly, all of them contain the origin. If λ < −0.2, there are
hyperbolas, and the origin δ1 = 0, δ2 = 0 is situated between the branches.

There are several prerequisites for testing. Now suppose that the range of acceptable faults is
given as |δs| ¬ 0.002, s = 1, 2; and the task is to estimate the time interval where this threshold
value is exceeded. To find the corresponding value of λ, we can use the contour lines for ∆4 = 0
(Fig. 5a). The curve that has a common point with the black rectangle (and does not intersect
it) is the one we are looking for, and λ ≈ −0.118. After this, we will conduct a series of tests
and gather the output of the state vector. The simulating results with piecewise functions δs,
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s = 1, 2 (Fig. 5b) are presented in Fig. 6: the sample curve to the left and the output of the
state coordinate to the right. Recall that for calculation of λmax, at least four tests with linearly
independent initial conditions are necessary. So, Fig. 6 presents the clipped results. Obviously,
the first time interval till t ≈ 10 is not satisfactory – the decreasing of the amplitude is almost
absent. The next interval (marked by snowflakes) t ∈ [12, 22] is more acceptable, and calculation
of λmax gives the value ≈ −0.115 ± ε. As a result, we can conclude that in this interval faults
are small enough and satisfy the given limitations. In the next interval [22, 35], damping is also
present, but the rate is insufficient λmax > −0.1. According to Section 3, this means that the
values of δs (at least one of them) exceed the threshold level. The last interval is even easier –
the amplitude of the oscillation starts to increase.

Fig. 6. State coordinate q1(t) sample and simulation curves

5. Conclusion

We have developed a scheme of fault detection for stabilizable underactuated dynamical systems.
The approach is based on the estimation of the maximum Lyapunov exponent from the output of
the state vector. We use the switching linear system model and the common quadratic Lyapunov
function for the system under study. The theorem is given which establishes the link between
the maximum CLE value of the perturbed solutions and the rate of the faults. One numerical
example is given to illustrate the method.
The proposed approach seems to be a fairly simple and effective tool for identifying and

estimating the errors that arise from inaccuracies in measuring the output signal and the effects
of the actuator. When working with systems of second-order equations, it has certain advantages
in constructing the Lyapunov function candidate (at least in comparison with the method of
linear matrix inequalities), since it operates with matrices of lower orders. This allows one to
reduce the time required for calculations and improve accuracy. As the subsequent objectives in
the future study, the following targets can be noted:

• taking into account the influence of unknown disturbances (d-terms in equations);
• increase the accuracy of the estimation due to additional analysis of the frequency com-
ponent;

• weakening the restrictions on the nonlinear part of the equations of motion;
• testing the technique in laboratory experiments.

Appendix

Blocks of the matrix Q

Q11 =

[
−2− 280551224 δ1 +

7777
408 δ2 −7721612 δ1 + 58168 δ2

28055
3374 δ1 +

3333
482 δ2 −1 + 1103241 δ1 − 747241δ2

]
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Q12 =

[
1813
1020δ1 − 446450913770340δ2

4767
136 δ1 − 1908786115508136 δ2

− 7771205δ1 + 574008348803705δ2 −6129482 δ1 + 24541535719521482 δ2

]

Q21 =

[
83183075
6194664 δ1 − 3294115294984 δ2

3270395
442476 δ1 − 24609549164 δ2

19801219
2064888 δ1 − 3920719491640 δ2

3892487
737460 δ1 − 29290781940 δ2

]

Q22 =

[
−15 − 153587147492δ1 +

378207691
1991191164 δ2 3− 67305532776 δ1 +

80850725945
3982382328 δ2

−3− 9140111229100δ1 +
2250750323
16593259700 δ2 −15 − 2403249163880 δ1 +

96230088317
6637303880 δ2

]

Main diagonal minors of the matrix Q

∆2 = −1.0167p22 + (−1.4688λ + 1.9956p1 − 0.2938)p2 + λ2 + λ(1.5706p1 + 0.4)
+ 0.04 − 0.9792p21 + 0.3141p1

∆3 = p
2
2(−1.7341λ − 1.1602) + p2[λ(−1.6386 + 3.6541p1)− 1.1589λ2 − 0.2814 + 2.3273p1]

+ λ3 + λ2(1.1129p1 + 1.4000) + 0.0400 + λ(0.4400 + 1.7017p1 − 1.9501p21)
+ 0.2958p1 − 1.1734p21

∆4 = p
2
2(−4.4049λ2 − 7.3554λ − 2.7589) + p2[−3.0650λ3 + λ2(9.3002p1 − 6.6249)

+ λ(15.1165p1 − 4.3973) − 0.6390 + 5.5250p1] + λ4 + λ3(3.4050p1 + 3.40000)
+ λ2(3.2400 + 7.1364p1 − 5.0055p21) + λ(−7.8640p21 + 4.7076p1 + 0.9200)
− 2.7827p21 + 0.0800 + 0.6833p1
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